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Abstract: The kallikrein–kinin system (KKS) is proposed to act as a counter regulatory system
against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone,
and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to
blood pressure but may also oppose target organ damage. Kinins are generated from kininogens
by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension
is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in
the kininogen gene sequence and mouse models in which the gene expressing only one of the
components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated
via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric
oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator
(T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions
remains debatable due to contradictory reports from various laboratories. Nevertheless, published
reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac
preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects
of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).

Keywords: kallikrein–kinin system; bradykinin; B1 and B2 receptors; angiotensin-converting enzyme;
angiotensin receptor blockers; hypertension; myocardial infarction; mice

1. Kallikrein–Kinin System

Plasma and tissue kallikreins are potent enzymes that generate kinins by hydrolyzing kininogens,
which circulate at high concentrations in plasma (Figure 1). Kinins are rapidly destroyed by kininases [1].

Plasma kallikrein, also known as Fletcher factor, is expressed mainly in the liver; in plasma it is
found in the zymogen form (pre-kallikrein) and differs from glandular kallikrein not only biochemically
but also immunologically and functionally. Plasma kallikrein is encoded by a single gene, KLKB1.
Some polymorphisms of this gene are associated with end-stage renal disease and hypertension [4–6].
Plasma kallikrein preferentially releases bradykinin (BK) from high-molecular-weight kininogen
(HMWK), also known as the Fitzgerald factor. Together with HMWK and Hageman factor (factor
XII), plasma kallikrein is involved in coagulation and fibrinolysis. The plasma kallikrein–HMWK
system, acting through the release of BK, could be involved in the local regulation of blood flow and in
mediating some of the effects of angiotensin-converting enzyme (ACE) inhibitors. On the other hand,
patients with a congenital deficiency of plasma HMWK (Fitzgerald trait) have normal amounts of
kinins in their blood [7] (For a review of the plasma kallikrein–HMWK system, see [8–11]).

Pharmaceuticals 2020, 13, 347; doi:10.3390/ph13110347 www.mdpi.com/journal/pharmaceuticals

http://www.mdpi.com/journal/pharmaceuticals
http://www.mdpi.com
http://www.mdpi.com/1424-8247/13/11/347?type=check_update&version=1
http://dx.doi.org/10.3390/ph13110347
http://www.mdpi.com/journal/pharmaceuticals


Pharmaceuticals 2020, 13, 347 2 of 25
Pharmaceuticals 2020, 13, x FOR PEER REVIEW 2 of 27 
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Figure 1. Site of kininogen cleavage (solid arrows) by the main kininogenases (glandular and plasma
kallikrein). The broken arrows indicate sites of kinin cleavage by kininases (kininase I, kininase II,
neutral endopeptidases 24.11 and 24.15 and aminopeptidases). (Modified after Rhaleb et al. [2,3])

1.1. Tissue (Glandular) Kallikrein

Kallikreins (KLK) are serine proteases with very high homology and are expressed by genes that
are compactly clustered and arranged in tandem on the same chromosome. The kallikrein family is
estimated to contain at least 15 genes in humans, 20 in rats and 23–30 in mice [12]. However, not all
these proteases generate kinins, despite their highly homologous amino acid composition; rather,
they act on different substrates and are expressed in different tissues [13–16]. KLK1 (tissue kallikrein)
is encoded by a single gene containing five exons and four introns. While the KLK1 gene is expressed
in the submandibular gland, pancreas and kidney, small amounts of kallikrein mRNA were detected
in the heart, vascular tissue and adrenal glands (PCR) [17,18]. Kallikrein and similar enzymes have
been found in the arteries and veins [19], heart [20], brain [21], spleen [22], adrenal glands [23] and
blood cells [18]; they have also been observed in the pituitary gland [24,25], pancreas [26], large and
small intestines [27,28], and salivary and sweat glands [29] along with their exocrine secretions. Tissue
kallikrein immunoreactivity can be found in plasma, primarily in the inactive form; only a small portion
remains active [30–33]. Approximately 50% of urinary kallikrein is found to be inactive (zymogen) in
humans [34] and rabbits [35], while in rats most of it is active [36]. Tissue kallikrein can release kinins
from low-molecular-weight kininogen (LMWK) and HMWK. In humans, KLK1 releases lys-bradykinin
(kallidin; KD), whereas in rodents it releases bradykinin [37,38].

1.2. Kininogens or Kallikrein Substrates

Kininogens or kallikrein substrates are the precursors of kinins. In plasma there are two main forms,
LMWK and HMWK. Interestingly, the human genome contains a single copy of the kininogen family,
whereas three copies exist in the rat (one encoding K-kininogen and two encoding T-kininogen, and two
homologous kininogen genes in the mouse genome, mkng1 and mkng2 [39,40]. In rats, T-kininogen,
the major kininogen, releases T-kinins (Ile-Ser-bradykinin) when incubated with trypsin but not with
tissue or plasma kallikrein. T-kinin, acting via B2 receptors, is one of the main acute reactants of
inflammation [41–44]. HMWK is involved in the early stages of surface-activated coagulation (intrinsic
coagulation pathway) [8,10,45].
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1.3. Kinins

Kinins are oligopeptides that contain the sequence of bradykinin and act mainly as local hormones,
since they circulate at very low concentrations (1 to 50 fmol/mL) and are rapidly hydrolyzed by kininases.
However, they exist in higher concentrations in the kidney, heart and aorta (100 to 350 fmol/g), further
supporting the hypothesis that in these tissues, they act mainly as local hormones [46]. Eicosanoids,
nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), tissue plasminogen activator
(T-PA) and cytokines reportedly mediate some of the effects of kinins [47–50] (Figure 2).
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Figure 2. Kinins act via the B2 and B1 receptors. Most of the known effects of kinins are mediated by
the B2 receptor which in terms act by stimulating the release of various intermediaries: eicosanoids,
endothelium-derived hyperpolarizing factor (EDHF), nitric oxide (NO), tissue plasminogen activator
(T-PA), glucose transporter (GLU-1 and -2) (modified from Rhaleb et al. [2])

1.4. Kininases

Kininases are peptidases found in blood and other tissues that hydrolyze kinins and other
peptides [51]. The most well-known is the angiotensin-converting enzyme (ACE) or kininase II,
which converts angiotensin I to II and inactivates kinin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP),
substance P and other peptides [51,52]. Another important kininase is neutral endopeptidase 24.11
(NEP-24.11), also known as enkephalinase or neprilysin, which not only hydrolyzes kinins and
enkephalins but also destroys atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and
endothelin [53,54]. Our research suggests that it may be an important renal kininase, at least in rats [55].
When ACE, NEP-24.15, aminopeptidases and carboxypeptidases are suppressed in vivo, endogenous
plasma kinins do not increase significantly and their half-life remains less than 20 s, suggesting that
other peptidases are also important for kinin metabolism [56]. In addition, several other kininases
have been described, including carboxypeptidase N (CPN) and carboxypeptidase M (CPM), together
called kininase I [11,57,58]. These enzymes are membrane-bound proteins that cleave C-terminal Arg
or Lys residues from peptides and proteins, and are responsible for the conversion of BK or KD into
B1 receptor ligands des-Arg9-BK or des-Arg10-KD, respectively [59–61]. Recently, a study has shown
that Kinin B1R positively modulates both CPM expression and activity, suggesting that CPM–B1R
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interaction in membrane micro-domains might affect enzyme activity, beyond interfering in receptors
signaling [62]. However, the physiological meaning of such interactions remains to be elucidated,
especially that CPM could cleave C-terminal Arg or Lys from many other peptides or proteins such as
the release of fribrinopeptide B15–42 [61].

1.5. Receptors

Kinins act on two well defined and characterized receptors, namely B1 and B2 [63,64]. Both have
been cloned and belong to the family of 7-transmembrane receptors linked to G-proteins [65].
B1 receptors are present at very low density (or not at all) in normal tissue but are expressed
and synthesized de novo during tissue injury, inflammation and administration of lipopolysaccharides
such as endotoxin [59,60]. Their main agonists are des-Arg9-bradykinin and des-Arg10-kallidin.
B2 receptors, the main receptors for BK and KD, mediate most of the effects of BK [58,66].

In humans, the B2 receptor is reportedly activated directly by kallikreins and other serine proteases
since this effect can be blocked by the potent and specific B2 receptor antagonist, icatibant [67].
Moreover, B2 has been found to interact directly with AT2 [68], B1 [69], ACE [70], and even other B2

receptors (forming homodimers) [71]. However, the physiological and pathophysiological significance
of such receptor interactions remain unknown.

2. The KKS in the Vasculature and Regulation of Local Blood Flow

Arteries and veins contain a kallikrein-like enzyme, and both vascular tissue and smooth muscle
cells in culture are known to express kallikrein mRNA [17,19]. Vascular smooth muscle cells in culture
release both kallikrein and kininogen [72]. Thus, the components of the KKS are present in vascular
tissue, where they could play an important role in regulation of vascular resistance. Arteries isolated
from mice lacking the kallikrein gene reportedly exhibited significantly reduced flow-induced dilatation
compared to controls, suggesting that the KKS in the arterial wall participates in the regulation of local
blood flow [73,74]. Moreover, in humans a partial genetic deficiency of tissue kallikrein (R53H) was
associated with inward remodeling of the brachial artery that renders it incapable of adapting to a
chronic increase in wall shear stress, a form of arterial dysfunction that affects 5–7% of Caucasians [75].
In organs rich in kallikrein, such as the submandibular gland, uteroplacental complex and kidney
kinins play an important role in local regulation of blood flow [76–79]. In nephrectomized pregnant
rabbits infused with an angiotensin receptor antagonist, ACE inhibitors increased both uterine and
placental blood flow and also raised levels of immunoreactive PGE2; subsequently, all of these effects
were blocked by a kinin antibody [77].

3. Kinins in Regulation of Cardiac and Renal Blood Flow

Kinins play an important role in regulating renal blood flow. In sodium-depleted dogs, the infusion
of low-dosed kinin antagonist into renal artery blocked renal kinins, which decreased renal blood flow
and autoregulation of the glomerular filtration rate (GFR) without altering blood pressure [80]. The role
of kinins in the regulation of renal blood flow distribution was determined using a laser-Doppler
flowmeter [78]. Hence, papillary blood flow, but not outer cortical blood flow, could be reduced by
a kinin receptor antagonist, suggesting that intrarenal kinins are important for the inner medulla
blood flow regulation. In anesthetized rats, blocking kinins decreases renal blood flow [79]. In dogs,
when kallikrein excretion was stimulated by sodium deprivation, intrarenal administration of BK
receptor antagonist partially blocked the effect of enalaprilat on renal blood flow [81], suggesting
that both the blockade of the renin–angiotensin system (RAS) and the increase in endogenous kinins
accounted for the increased renal blood flow caused by ACE inhibition. In normal rats, kinins play a
minor role in regulation of renal blood flow; however, when the KKS is stimulated by low sodium
intake or mineralocorticoids, or when endogenous kinin degradation is inhibited, kinins participate in
the regulation of renal blood flow [82–84].
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Numerous experimental studies using animal models have focused the role of the KKS in the
regulation of coronary blood flow and its repercussion on cardiac diseases. Local cardiac KKS is
believed to exert a significant cardiac protective role by delaying the development of heart failure
such as in myocardial infarction. This has been demonstrated by using strategies such as kallikrein
gene transfer, tissue kallikrein infusion, and human kallikrein over expressing animals, or B1 or B2

BK receptor knockout mice. Studies have suggested that the KKS increases coronary blood flow,
and decreases infarct size and left ventricular remodeling post myocardial infarction [85,86]. Some of
these aforementioned studies have also shown that the beneficial effects seen in the treatment with
ACE inhibitors and/or angiotensin receptor blockers (ARBs) are not only due to the inhibition of
Ang II generation or effects, but also in part to the prevention of bradykinin enzymatic degradation;
this suggests that the KKS plays a significant role in the effects of ACE inhibition, particularly on
angiogenesis and myocardial regeneration [87–91].

4. Kinins in Blood Pressure Regulation and the Pathogenesis of Hypertension

Proper blood pressure regulation and function maintains the balance between vasopressor
and vasodepressor systems. Any alterations of this equilibrium may result in (a) hypertension,
(b) target organ damage, (c) ineffective antihypertensive treatment, or (d) hypotension and shock.
These alterations could occur because of (a) modification in the genetic factors such as a mutation
in one or more genes of the vasoactive system, (b) environmental factors that alter the activity of
vasoactive systems and/or epigenetic factors. The role of the KKS in the pathogenesis of hypertension
has been studied by (1) measuring various components of the system, (2) examining bradykinin B2

receptor antagonists, (3) studying mice with B1, B2, or both deleted by homologous recombination,
(4) the deletion of the tissue kallikrein gene, and (5) observing rats deficient in kininogen. Endocrine
and neuroendocrine vasopressor systems, such as the RAS system and catecholamines, have been long
established as important endogenous regulators of blood pressure, the pathogenesis of some forms of
hypertension, and end organ damage and dysfunction. On the other hand, the role of vasodepressor
systems remains controversial; however, there is some evidence that suggests vasodepressor systems
may be important contributors in regulation of blood flow, renal function, the pathogenesis of
salt-induced hypertension, and end organ injury and the cardio-renal protective effects of ACE
inhibitors and ARBs [89,92–95]. Vasodepressor hormones such as kinins, eicosanoids, NO, carbon
monoxide (CO), and EDHF are some of the local hormones that may oppose the effects of vasopressor
systems. Some vasodepressors such as atrial (ANP), brain (BNP), and C-type (CNP) natriuretic peptides
may act as both endocrine and local hormones.

Decreased activity of the KKS may play a role in hypertension. Indeed, low urinary kallikrein
excretion in children is one of the major genetic markers associated with a family history of essential
hypertension, and children with high urinary kallikrein are less likely to be genetically predisposed to
hypertension [96–99]. A restriction fragment length polymorphism (RFLP) for the kallikrein gene family
in spontaneously hypertensive rats (SHRs) has been linked to high blood pressure [100], and urinary
kallikrein excretion is decreased in several models of genetic hypertension and in renovascular
hypertension [101–104]. Decreased urinary kallikrein in (a) normotensive children of patients with
essential hypertension, (b) genetically hypertensive rats and (c) pre-hypertensive Dahl salt-sensitive
rats [105–109] could be secondary to hypertension through mechanisms that might be specific for
each model.

Blood pressure and cardiovascular function are normal in HMWK-deficient rats, and B1
-/- or

B2
-/- and tissue kallikrein-/- mice, however, in the kallikrein-/- mice, the structure and function of the

heart are clearly abnormal [74,110–113]. Chronic blockade of B2 receptors with the icatibant (Hoe-140,
B2 antagonist) did not increase blood pressure under normal conditions or in situations that favor
hypertension in rats [111,114]. However, contradicting findings have been published, reporting that
lack of circulating kininogen or blockade of B2 receptors are associated with significant increases in
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blood pressure under normal conditions or when animals are challenged with a pressor agent such as
a high salt diet or Ang II infusion [115–118].

The bradykinin B2
-/- mice have normal blood pressure; however, they develop hypertension

when fed a very high-sodium diet (8%) for at least 2 months [119,120]. Thus, low kinin activity may
be involved in the development and maintenance of salt-sensitive hypertension. However, in B2

-/-,
mice hypertension was not exacerbated when induced by mineralocorticoids (renin-independent)
or coarctation of the aorta (renin-dependent) [113]. Additionally, others have reported that as these
mice grow older, they also develop hypertension and left ventricular hypertrophy even on a normal
sodium diet [121–123]. Others have shown that mice lacking the gene for B2 receptors (B2R(-/-)CRD

mice) exhibited transient hypertension phenotype from 2 to 4 months of age, but developed salt
diet-dependent hypertension [124]. However, we and others were unable to confirm that B2 ablation
renders mice spontaneously hypertensive [110,113,120,125,126]. Mice deficient in B1, B2 or both,
as well as mice with low tissue kallikrein, had blood pressure readings similar to wild-type controls,
confirming that kinins are not essential for the regulation of basal blood pressure [126].

A lack in both B1 and B2 (as in Akita mice) exacerbates diabetic complications as well as oxidative
stress, mitochondrial DNA damage and overexpression of fibrogenic genes, yet, these mice are
normotensive [127]. In kininogen-deficient Brown Norway Katholiek rats (BNK), administration of
mineralocorticoids and salt or angiotensin II increased blood pressure to the same degree as rats with
a normal KKS [111], contradicting reports by other investigators [115–117]. Thus, taken together,
the published data would suggest that kinins are not critical for blood pressure regulation, nor are
they required for the development of hypertension, except for animals under a very high salt diet.
Thus, a chronic blockade of the KKS does not cause hypertension. There are in the literature some
fine reviews depicting the role of kinins in hypertension and cardiovascular regulation (please refer
to [11,58,128,129].

KKS could also have an impact on blood flow and pressure via bradykinin, which has been
demonstrated to enhance transmitter release from the sympathetic nerves. Indeed, it was first discovered
that bradykinin potentiates the release of adrenaline from the adrenal medulla [130]. Moreover,
bradykinin was found to potentiate the release of norepinephrine from mouse, rat, and human right
atria; however, the opposite is true for rabbit heart in which bradykinin inhibits norepinephrine
release [131–133]. In addition, Kansui et al. reported that bradykinin enhances the sympathetic
purinergic neurotransmission via presynaptic B2 receptors in rat mesenteric resistance arteries [134].
However, the physiological and clinical significance of the bradykinin on the sympathetic nervous
system remain unclear and warrant further investigation.

5. Role of Kinins in Thermoregulation

Various contributors and mechanisms participate in the maintenance of thermoregulatory
homeostasis in individuals that are exposed to environmental temperatures. The primary physiological
responses include an increase in metabolism (shivering thermogenesis), an alteration in the vasomotor
responses (peripheral vasoconstriction/vasodilation), and a circulatory response (countercurrent heat
mechanism). These factors added to fitness level, body composition, age, gender, and ethnicity could
influence an individual’s ability to regulate body temperature [135]. Particularly, it has been established
that Caucasians markedly exhibit a greater expansion of energy to maintain their core temperature
in response to acute cold stress as compared to African-American subjects. Caucasian individuals
are also at reduced risk for the development of hypothermia compared to African-American subjects,
as demonstrated by the increased shivering thermogenesis and energy expenditure, which helps
maintain temperature homeostasis [135]. Kallikrein, the enzyme responsible for the release of kinins,
is diminished in African-Americans as demonstrated by the significant decrease in renal kallikrein
and potassium excretion [136]; also, Allelic frequencies for three of the four polymorphisms of the B2

receptor gene were significantly different from those reported in Caucasian populations. Among the
polymorphisms analyzed, a potentially and functionally significant polymorphism in the core promoter
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of the kinin B2 receptor (C-58–>T transition) [137] has been observed. Thus, this B2 receptor promoter
polymorphism may represent a susceptibility marker for not only essential hypertension in African
Americans, but also their lack of efficient thermoregulation. Mice in which the gene expressing B2

receptor has been specifically deleted from the endothelium (B2
flox/flox.Tie2Cre) presented normal blood

pressure readings compared to the wild type. However, B2
flox/flox.Tie2Cre mice experienced lower

body temperature (by about 1.5 ◦C) compared to wild-type mice when housed in a room at 23 ◦C,
which is 7 ◦C below thermoregulation (N.-E. Rhaleb, unpublished observation). On the other hand,
B1 receptors, which are induced in inflammatory diseases such as type I diabetes, could also contribute
to hyperthermia through a vagal sensory mechanism involving prostaglandins (via Cyclo-oxygenase-2)
and nitric oxide [138]. Nevertheless, more studies are ongoing to determine this novel role of
endothelial B2 receptors under basal and stress conditions such as cold and hot environments and in
the hypertensive state.

6. KKS Versus SARS-CoV2 in COVID-19 Patients

The COVID-19 pandemic has taken the world by storm and has quickly become a major morbidity
risk factor and a source of mortality. Numerous clinical observations indicate that COVID-19 fatalities
were linked not only to respiratory distress but multifaceted cardiac involvement including myocarditis,
hypoxia induced type 2 myocardial infarction, acute atherothrombotic myocardial infarction, cardiac
injury from drug toxicity, and endogenous catecholamine adrenergic activity that could lead to the
development of stress cardiomyopathy and cardiac arrhythmias. Millions of patients have tested
positive for the SARS-CoV-2 virus, the virus responsible for the COVID-19 disease, with up to a 3.7%
death toll, a rate that continues to increase as more individuals are tested. Clinical data have indicated
that 20–36% of patients with COVID-19 are afflicted by acute myocardial injury [139], and this incidence
rate will certainly be changing as and when new epidemiological and clinical data are published
on the effects of SARS-CoV2 virus on the CVD of patients with or without existing comorbid factor.
New onset of heart failure (HF) was observed in as much as a quarter of hospitalized COVID-19
patients; and in as much as one-third of those admitted to the intensive care unit [140]. Therefore, it is
thought that there must be a host response to the Severe Acute Respiratory Syndrome Coronavirus 2 of
the genus Betacoronavirus (SARS-CoV2) during which the innate pro-inflammatory immune response
is triggered. Angiotensin-converting enzyme (ACE)-2 surfaced as an important receptor for the virus,
which permits viral cell entry and propagation [141–144]. During this COVID-19 crisis, scientists
have discovered that SARS-CoV-2 uses ACE2 as a receptor for entry in the host cells, and the serine
protease TMPRSS2 for S protein priming [145–148]. Figure 3 summarizes the relationships between
ACE2 and RAS. In addition to the involvement of ACE2 in the conversion of Ang I into Ang (1–9)
or Ang II into Ang (1–7) [149,150], ACE2 inactivates des-Arg9-BK (the B1 receptor agonist) [151,152],
and thus, provides anti-inflammation effects. The B1 agonist is responsible for the potent and sustained
pro-inflammatory and hyperalgesia effects via B1 receptors [11,129]. Moreover, it has been hypothesized
that the virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release
through dysregulation of the RAS (ACE/Ang II /AT1R axis), attenuation of ACE2/MasR axis, increased
activation of desArg9-BK/B1 receptor pathway, and activation of the complement system including C5a
and C5b-9 components [152]. Moreover, Ang (1–7) acting through Mas receptors or Ang (1–9) through
AT2 receptors activates tissue KKS to release kinins, thus providing cardiovascular and renal protection
that are mediated by B2 receptors [2,153–155]. However, a recent clinical study has interestingly
reported that COVID-19 patients that received icatibant, a potent B2 receptor antagonist, experienced
improved oxygenation [156]; this is consistent with the role of B2 receptors in mediating the swelling
of soft tissues as a result of excess fluid accumulation [156], and making COVID-19 patients face a
life-threatening condition whereby the lungs cannot provide the body’s vital organs with enough
oxygen [2,11,58,129]. It has been proposed that pulmonary edema could be due to a local vascular
problem due to the activation of B1 and B2 receptors on endothelial cells in the lungs; as a result,
the blockade of kinin receptors and/or inhibiting plasma kallikrein activity, could have an ameliorating
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effect on early disease caused by COVID-19 and might prevent ARDS [156]. However, one must be
reminded that icatibant could act as an antagonist of the B1 receptor as well, because we have shown
that icatibant could be converted to desArg9-icatibant and block the effect of desArg9-BK [157]. Thus,
using experimental models with genetically modified B1 or B2 receptors could explain the contribution
of each of the kinin receptors during SARS-CoV2 exposure. Noteworthy, the serine protease TMPRSS2
for S protein priming has also surfaced as an important protein that facilitates the propagation of
SARS-CoV2 virus [145–148]. Indeed, a TMPRSS2 inhibitor approved for clinical use has been shown to
block entry, and thus, together with an ACE2 inhibitor, these inhibitors could constitute a potential
treatment option. However, how and whether ACE2 and TMPRSS2 interact, or the balance between
ACE2, Angiotensin peptides and kinins during the viral attack remain to be elucidated.
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Figure 3. Relationship between RAS and SARS-CoV2: Angiotensinogen (Agtg) is converted to
Angiotensin I (Ang I) by renin, which in turn is converted to Ang II by ACE or Ang (1–9) by ACE2
during ACE-I treatment. Ang II is also converted by ACE2 to Ang (1–7) during ARB. ACE-Is and ARBs
increase ACE2 expression and activity in animal and human studies through mechanisms that remain
to be elucidated. In addition, ACE-I increases circulating and tissue Ac-SDKP, which in turn increases
ACE2. Ang II acting through AT1 receptor mediate most of the detrimental cardiovascular effects
of Ang II through AT1 receptors (AT1R). Those effects are blocked by ACE-I or angiotensin receptor
blockers (ARBs). Activation of AT2 by Ang (1–9) or mitochondrial assembly receptor (MasR) by Ang
(1–7) mediate some of the protective effects of ACE-I and ARBs). A large population of hypertensive
patients is treated with either ACE-I or ARBs, making them at high risk for SARS-CoV-2 associated
morbidity and mortality. Binding of ACE2 to SARS-CoV2 leads to viral entry and replication, leading
to severe lung injury. ACE2 also degrades desArg9-BK but not BK. Potential therapeutic approaches
include a SARS-CoV-2 spike protein-based vaccine, blocking the surface ACE2 receptor by using an
ACE2 inhibitor, or use of B1 receptor antagonists during the period of the propagation of the virus to
halt viral spread and the lung or other organs from injury.

7. Role of Kinins in the Therapeutic Effect of ACE Inhibitors and Angiotensin Receptor
Blockers (ARBs)

Inhibition of the degradation of kinin and other vasodilator oligopeptides may contribute
to the antihypertensive effect of ACE inhibitors. While a blockade of angiotensin II formation
plays an important role in this process, the role of kinins or other endogenous peptides such as
Ac-SDKP is less well established (Figure 4). Concentrations of kinins in tissue may well exceed
blood levels and could conceivably contribute to the anti-hypertensive and vasodilator effects
of ACE inhibitors in humans [86,89]. Orally active ACE inhibitors are effective antihypertensive
agents, not only in high-renin hypertension but also in clinical and experimental models that
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do not involve the systemic RAS [158,159]. Thus, some of their effects may be mediated by a
local RAS, kinins or some other undetermined mechanism, since ACE can hydrolyze numerous
other peptides (Figure 4). ACE inhibitors may also augment the effect of kinins by interacting
directly with the B2 receptor [160]. Blood kinins are unchanged or moderately increased after
treatment with ACE inhibitors [3,161,162] (for a review, see [163,164].) Kinins in the urine reportedly
increase more consistently following ACE inhibition therapy, which suggests their renal concentration
increases too [55,165–168], thus strengthening the antihypertensive effect of ACE inhibitors by altering
renovascular resistance and increasing sodium and water excretion. Studies involving various
experimental models of hypertension have shown that the acute antihypertensive effect of ACE
inhibitors is attenuated by blocking kinins with either high titer kinin antibodies [169–171] or a B2

receptor antagonist [161,162,172].
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Figure 4. Numerous endogenous peptides are targeted by ACE, resulting in the release of either inactive
(for example, kinins and Ac-SDKP) or active ligands such the conversion of Ang I to Ang II. ACE has
also been linked to direct effects such as its direct interaction with B2 receptors or by scavenging
super oxide. Inhibition of ACE resulted in numerous protective effects at the level of the vasculature,
heart and kidneys.

Kinin antagonists also partially reversed their antihypertensive action in rats with renovascular
hypertension [173]; however, lack of B2 receptors did not abolish the anti-hypertensive effect of ACE
inhibition in mice with renovascular (2 kidney-1 clip or 2K1C) hypertension (Figure 5). This is not
surprising, since it is well established that the RAS plays a major role in the development of renovascular
hypertension. However, kinins may be responsible for the acute antihypertensive effect of ACE
inhibitors such as enalaprilat [162]. Indeed, in rats with severe hypertension induced by aortic ligation
between the renal arteries, renin is necessary for the pathogenesis of hypertension [158]; however,
acute and severe hypertension can damage the endothelium enough to activate plasma pre-kallikrein
and increase kinin formation. Enalaprilat lowered the mean blood pressure by 48 ± 6 mm Hg in
the controls and 21 ± 4 mm Hg in the kinin antagonist group (p < 0.01); however, kinins in arterial
plasma were not significantly altered by the ACE inhibitor (41 ± 10 vs. 68 ± 20 pg/mL). We have
also confirmed the role of B2 receptor in the acute hypotensive effect of ACE inhibition in a model of
glucocorticoid-salt-induced hypertension using B2 receptor knockout mice [113]. As indicated earlier,
kinins’ concentration in the blood must reach at least 1000 pg/mL before they can efficiently lower
blood pressure in non-anesthetized rats [174]. Thus, the effect of the ACE inhibitor may have been
due to an increase in tissue kinins, which could regulate vascular resistance acting as a paracrine
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hormonal system. Cachofeiro et al. [161] demonstrated that pretreatment with a B2 receptor antagonist
or NO synthesis inhibitor attenuated the acute antihypertensive effect of both captopril and ramipril in
SHR whereas a prostaglandin synthesis inhibitor made no difference, suggesting that this effect was
due to bradykinin stimulating the release of NO. However, in dogs, kinins may strengthen the acute
hypotensive effect of ACE inhibitors via prostaglandins [175].
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Figure 5. Renovascular hypertension (2 kidney-1 clip) was induced in B2
-/- mice. At week 5, hypertensive

mice were treated with either vehicle or an ACE inhibitor, Ramipril (1 mg/kg/day) in drinking water for
4 weeks. Absence of B2 receptor did not prevent ACE inhibition from normalizing blood pressure in
hypertensive mice. *, p < 0.05 2K-1C versus Sham; **, p < 0.05 2K-1C versus 2K-1C + ramipril. (N.-E.,
Rhaleb, unpublished observation.)

In humans, an ACE insertion/deletion polymorphism at intron 16 of the ACE gene could be
important for bradykinin metabolism [176], as ACE activity is higher in subjects with ACE deletion
and correlates with rapid bradykinin degradation. In normotensive subjects and hypertensive patients
with low or normal renin, aprotinin (an inhibitor of kallikrein and other proteases) partially blocked
the acute antihypertensive effect of captopril [177]. While that could have been due to kinin inhibition,
other investigators tested a specific B2 kinin receptor antagonist (icatibant) and found that the short-term
blood pressure effects of ACE inhibitors were attenuated in both normotensive and hypertensive
subjects [178], suggesting that the acute effect of ACE inhibitors is mediated in part by kinins affecting
local and peripheral vascular resistance either directly or through release of prostaglandins and NO.

The contribution of kinins to the chronic antihypertensive effects of ACE inhibitors remains
controversial. In renovascular hypertension (2K1C), chronic blockade of kinin receptors interferes
with ramipril’s ability to lower blood pressure [179]. In mineralocorticoid hypertension, where KKS
and ACE activity are reportedly increased [180], chronic ACE inhibitors have a small but significant
antihypertensive effect that can be blunted by blocking the B2 receptor with icatibant [111,181],
suggesting that kinins may be involved; however, they are ineffective in SHR [179] or hypertension
that is induced by aortic coarctation [114,161,182]. Therefore, the role of kinins in the long-term
antihypertensive effect of ACE inhibitors depends on the model. To our knowledge, no studies of
chronic KKS blockade have been conducted in humans.

ACE inhibitors, but not ARBs, are also known to increase N-acetyl-seryl-aspartyl-lysyl-proline
(Ac-SDKP), which also promotes anti-fibrosis and anti-inflammation. Ac-SDKP is an endogenous
tetrapeptide found in circulation and in various organs, including the heart [183,184]. Ac-SDKP is
endogenously produced from a 43-amino acid thymosin 4 (Tβ4) through two successive enzymes,
meprin α and prolyl oligopeptidase [185–188]. On the other hand, Ac-SDKP is hydrolyzed mainly
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by ACE and its circulating levels were found to increase more than five-fold in patients treated with
ACE-I [189]. Studies from our group have shown that in models of hypertension and myocardial
infarction (MI), Ac-SDKP exerts anti-inflammatory and anti-fibrotic effects in the heart [190–192].
However, whether Ac-SDKP functions could provide additive cardiovascular protective effects to those
mediated by first choice pharmacotherapy for cardiac diseases, such as ARBs, ACE-I, β-adrenergic
blockers or calcium channel blockers, remains to be elucidated.

8. Role of Kinins in the Effects of ACE Inhibitors on Hypertensive Target Organ Damage and in
Heart Failure Post-MI

ACE inhibitors have been shown to reverse LV hypertrophy in essential hypertension and in
various experimental models of hypertension, in great part due to reduced afterload. Although Linz
et al. reported they were able to reverse the anti-hypertrophic effects of an ACE inhibitor using a
kinin antagonist [193], we have not been able to confirm this [114]. Nevertheless, there is a large
body of evidence that ACE inhibitors reduce morbidity and mortality, improve cardiac function,
regress LV remodeling, and prolong life in patients with heart failure (HF), not only improving
cardiac function and increasing survival but also lessening myocardial re-infarction [194]. Since ACE
inhibitors prevent kinin degradation in the coronary and renal circulation, it could be through
advanced pathways that kinins stimulate NO and PGI2 (important inhibitors of platelet aggregation)
to block platelet aggregation, coronary arterial stenosis and eventually myocardial infarction or
renal ischemia. Kinins are also potent stimulators of T-PA [50,195], thereby activating plasmin
and fibrinolysis. In a rat model of HF due to MI, ACE inhibitors improved cardiac function and
attenuated remodeling, and these beneficial cardiac effects were diminished by blocking kinins [91].
Moreover, in B2

-/- mice and kininogen-deficient rat post-MI, ACE inhibitors had diminished protective
effects [90,95]. Although, despite not exactly knowing how kinins protect the heart, it is possible
kinin-stimulated release of NO, EDHF, and/or PGI2 could be largely responsible [196,197]. Table 1
summarizes some of the important findings on the putative role of kinins in myocardial infarction.
The bradykinin-induced EDHF could be highly relevant in conditions of tilted NO and PGI2 of any
vascular bed. This results in the maintenance of intact endothelial function in disease states such
as hypertension, heart failure and diabetes in which NO-mediated responses are compromised due
to increased oxidative stress [198,199]. EDHF has also been shown to mediate bradykinin-induced
mouse ductus arteriosus patency when NO, PGI2 and carbon monoxide have been suppressed [200].
These combinatorial factors contribute substantially to basal human forearm vascular resistance,
as well as to the forearm vasodilation that is evoked by bradykinin in vivo [201]. We have also shown
that in pre-contracted porcine coronary artery, bradykinin induced deep relaxation was mediated
via EDHF, a mechanism that was independent of NO, arachidonic acid metabolism, or reactive
oxygen species [202]. ACE inhibition-induced renal vasodilation, which is mediated in part through
B2 kinin receptor, appears to be dependent on the release of EDHF; this was demonstrated in a
canine renal microcirculation in superficial and juxtaglomerular nephrons in an in vivo, in situ,
and intact setting [203]. Taken together, these findings suggest that kinins acting on the B2 receptors
as mediated through endothelium-released factors play an important role in the cardioprotective
action of ACE inhibitors. Ac-SDKP is another endogenous peptide that could participate in the
protective effects of ACE inhibitors since the circulating concentrations or tissue contents of Ac-SDKP
are increased multi-fold in human and rats treated with ACE inhibitor [189,204–206]. We and others
have demonstrated that part of cardiac and/or renal protective effects could be mediated through
Ac-SDKP in experimentally-induced hypertension or diabetes [191,204,207]. Hence, the protective
effects of ACE inhibitors are not limited to reduced Ang II production but could be mediated in
part through kinins and/or Ac-SDKP by preventing their degradation and increasing their respective
circulating and tissue half-life.
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Table 1. Role of kinins in myocardial infarction.

Animal Specie Receptors Effects Methods Tools References

Mice B1 and B2
receptors

Both contribute in
cardioprotective effect of ACE-I

MI by left anterior descending
coronary artery (LAD) ligation

B1-R(-/-)
B2-R(-/-) [208]

Mice B2 receptors

Improve cardiac function, tissue
remodeling, and inflammation

(structural and functional
benefits)

MI by LAD ligation B2 receptor selective agonist [209]

Mice B1 receptors Cardioprotective effects (improve
cardiac function and remodeling) MI by LAD ligation B1-R(-/-) [112]

Mice B2 receptors Cardioprotective effect of ACE-I
and ARB MI by LAD ligation B2-R(-/-) [95]

Mice B2 receptors Cardiac remodeling, hypertrophy
and dysfunction MI by LAD ligation B2-R(-/-)

B1 or AT2 receptor antagonist [88]

Mice B1 receptors
Mediated part of the

cardioprotective effects of ACE-I
and ARB

MI by LAD ligation B1-R(-/-)
B1 or AT2 receptor antagonist [112]

Mice B2 receptors Reduced infarct size reduced
cardiomyocyte apoptosis Ischemia reperfusion

B1 and B2 receptor agonists,
B2-R(-/-), B2 receptor

antagonist, preconditioning
[94,210,211]

Mice B2 receptors Reduced infarct size and
cardio-protection Ischemia reperfusion

Tissue-kallikrein deficient
mice, AT1 and AT2 receptor

antagonists
[212]

Rats B2 receptors Reduced infarct size Isolated heart, ischemia
reperfusion

Brown Norway Katholiek
(BN-Ka) rats, B1 or B2 receptor

antagonists or agonists,
neutral endopeptidase (NEP)

inhibitor, ACE-I

[94,213,214]

Rats B2 receptors
Inhibits collagen deposition,
reduce myocardial collagen

accumulation by ACE-I and ARB
MI by LAD ligation B2 receptor antagonist [215]

Rats B2 receptors Mediated protective effects of
ARB and ACE-I MI by LAD ligation ACE-I, ARBs, AT2 receptor

antagonist [91]

Rats B2 receptors Reduce infarct size MI by LAD ligation
BN-Ka rats, B2 receptor

antagonist, and a nonpeptide
B2 receptor agonist

[216]

BN-Ka kininogen Kinin do not mediate the
beneficial effects of ACE-I MI by LAD ligation BN-Ka versus BN Norway

Hannover (wild-type rats) [217]

Rat B2 receptors

Inhibit the interstitial
accumulation of collagen,

no effects on cardio myocyte
hypertrophy

Morphometric analysis,
collagen deposition in left

ventricular interstitial
B2 receptor antagonist [218]

Rats B1 receptors
Inhibited myocardial

noradrenaline, reduced
ventricular fibrillation

Ischemia reperfusion B1 receptor agonist and
antagonist [219]

Rabbit B2 receptors Reduction in infarction size Ischemia/reperfusion B2 receptor antagonist [220]

Rabbit B2 receptors Mediated the effect of ACE-I on
infarct size

MI by LAD ligation plus high
cholesterol diet B2 receptor antagonist [221]

Dog B1-receptor Hypotensive effect, peripheral
vasodilation

Intra-arterial and intravenous
injection B1 agonist [222]

Dogs B1 and B2
receptors

Decreases mean arterial pressure
(MAP) and coronary vascular

resistance (CVR)
i.v. infusion B1 receptor agonist and

antagonist [223]

Dogs B2 receptors Reduced infarct size Isolated heart, ischemia
reperfusion

Combined NEP/ACE inhibitor,
B2 receptor antagonist [224]

Of great interest, the PARADIGM-HF clinical trial showed that angiotensin-neprilysin inhibition
was superior to the ACE inhibitor enalapril in patients with heart failure with reduced ejection
fraction [225]. The combination drugs lead to reduction in the risks of death and of hospitalization
in heart failure patients with reduced ejection fraction. Neprilysin, a neutral endopeptidase,
which degrades kinins, enkephalins, natriuretic peptides, and adrenomedullin [53,54], increases
the levels of these substances, leading to less vasoconstriction, sodium retention, and maladaptive
remodeling. This study clearly illustrates that the combined inhibition of the renin–angiotensin
system and neprilysin had effects that were superior to ACEi alone. However, the PARAGON-HF
clinical trial showed that angiotensin-neprilysin inhibition failed to deliver the desired decrease in
mortality or hospitalization in patients with an ejection fraction that was greater than 45% [226]. Hence,
angiotensin-neprilysin inhibition is effective in patients with reduced ejection fraction and not in
preserved ejection fraction. These effects could be mediated in part through kinins. Indeed, several
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studies attempted to demonstrate the dependence of the cardiovascular and renal protective effects
of neprilysin inhibitors on kinins by using either bradykinin receptor antagonists, anti-bradykinin
antibodies, or serine protease (kallikrein) inhibitors [227]. Two different mechanisms that may account
for the potentiation of bradykinin receptor-mediated actions by neprilysin inhibitors have been
proposed, including (1) neprilysin inhibitors may potentiate bradykinin receptor-mediated actions
by inhibiting bradykinin degradation and increasing bradykinin levels in the vicinity of the receptor,
and (2) neprilysin inhibitors may potentiate bradykinin receptor-mediated actions by promoting
cross-talk between the neprilysin-inhibitor complex and the bradykinin receptor; this is similar to
the cross-talk between the ACE-inhibitor complex and the B2 receptor proposed to mediate ACE
inhibitor-induced potentiation of bradykinin receptor-mediated effects (see review by Campbell for
further details [227]).

9. Role of Kinins in the Cardioprotective Effect of ARBs

Blockade of the Ang II type 1 receptor (AT1), using ARBs, presents a critical pathway towards
achieving antihypertensive and in organ protection. In parallel, activation of the Ang II type 2
receptor (AT2) is cardioprotective, through in part the release of kinins and nitric oxide/cylic guanylate
monophosphate (NO/cGMP) [228–230]. Moreover, we have demonstrated that activated AT2 receptors
lead to the activation of prolylcarboxypeptidase (PRCP, a plasma pre-kallikrein activator) and release
of bradykinin [231]. Both in vitro and in vivo studies have demonstrated that Ang II via the AT2

stimulates NO/cGMP production in the vasculature since these effects are blocked by either an AT2 or
kinin B2 antagonist [153,228,232]. Since blockade of AT1 increases Ang II, which in turn may activate
AT2, it seems reasonable that the cardioprotective effect of ARBs is mediated in part by kinins via
activation of AT2. In fact, studies have shown that ARBs improved cardiac function and ameliorated
remodeling in rats with HF post-MI and these effects were attenuated by an AT2 or B2 antagonist [91]
or in mice lacking AT2 receptors (AT2

-/-) [233]. Other studies using B1
-/-, B2

-/- or eNOS-/- mice and
kininogen-deficient rats have reported that the lack of kinins or endothelium-derived NO diminished
the cardioprotective effect of ARBs [89,95,197,234].

10. Material and Methods

10.1. For Renovascular Hypertension in B2
-/- Mice

Male B2R-/- (B6; 129S7-bdkrb2tm1Jfh/J; stock number 002641; 8 weeks old) on a C57BL/6J background
were purchased from Jackson Laboratories (Bar Harbor, ME, USA). Mice were housed in an
air-conditioned room with a 12-h light/dark cycle and given standard chow and tap water. This study
was approved by the Henry Ford Hospital Institutional Animal Care and Use Committee (IACUC).
All animal experiments were conducted in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals.

10.2. Induction of 2K-1C Hypertension

One week after adapting to their new environment, mice were anesthetized with Nembutal
(50 mg/kg; i.p.), and the left kidney was exposed through a flank incision. After separating the renal
artery and vein, a hand-made silver clip with an internal diameter of 127 µm was placed around the
renal artery [235,236]. In the sham operation, the mice had the same surgery, but the artery was not
clipped. The experiment was continued for up to 9 weeks. Vehicle or an ACE inhibitor (ACEi) ramipril
(1 mg/kg/day) was started in drinking water at week 5 post-surgery (Figure 4).

10.3. Systolic Blood Pressure (SBP)

SBP was measured weekly in conscious mice using a noninvasive computerized tail-cuff system
(BP-2000, Visitech, Apex, NC, USA). Each SBP reading comprised three sets of 10 measurements,
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with each set including more than 6 out of 10 successful measurements. Weekly SBP was averaged
every 4 weeks.

10.4. Data Analysis

All data are expressed as mean ± SE. Student’s two–sample t-test was used to compare differences
between treatments within the mouse strain.

11. Conclusions

We conclude that kinins do not play a fundamental role in the pathogenesis of hypertension,
since humans, rats, and mice that are deficient in one or more components of the KKS or
chronic KKS blockade do not cause hypertension. Renal kinins help regulate papillary blood
flow and water and sodium excretion, which explains why B2-KO mice are more salt-sensitive.
Kinins are also potent mediators of inflammation by mediating the cardinal signs of inflammation,
acting mainly via inducible B1 and in certain diseases B2. While kinins participate in the acute
antihypertensive effect of ACE inhibitors, in general they are not involved in their chronic effects
except for mineralocorticoid-salt-induced hypertension. Kinins acting via NO enhance the vascular
protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by
ischemia/reperfusion, kinins play an important role in the infarct reduction seen after preconditioning
or ACEi treatment. In HF secondary to infarction, the therapeutic effects of ACEi are partially mediated
by kinins via NO while that of ARBs is due in part to the activation of AT2 via kinins and NO. Thus,
kinins play an important role in regulating thermoregulation, cardiovascular and renal function as
well as many of the beneficial effects of ACEi and ARBs.
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